

shipborne radiometers for sea surface temperature

A next generation in-situ radiometer

Tim Nightingale, Arrow Lee and Werenfrid Wimmer

Outline

- Background
- User consultation
- Design drivers
- Survey of existing designs
- Design choices
- Outline design

Background

- Most in-situ radiometers currently in service are still from the first generation of effective, reliable instruments
 - Obsolescence increasingly an issue
 - Greater flexibility desirable
 - Next generation of satellite radiometers under development (CIMR, ASLSTR, LSTM, ...)
 - Opportunity to revisit design choices made 20+ years ago

From left to right: SISTeR, ISAR, CIRIMS, M-AERI and DAR011 on the R/V F.G. Walton Smith in 2001

ships4sst: FRM4SST

ISFRN Workshop: A next generation in-situ radiometer

8 September 2022

Page 3

Background

- CCN to current FRM4SST contract: "WP80: Case study for a next generation radiometer"
- Were tasked to:
 - Consolidate instrument requirements
 - Survey different measurement approaches
 - Review existing instruments
 - Propose an outline design for a new instrument

User consultation

- User consultation in October 2020 to discuss key drivers and design choices
 - SST validation is the primary activity
 - Main requirement is for traceable SSTs with total uncertainties of 100 mK or better (includes SST retrieval, auxiliary data, model uncertainties, ...)
 - Other applications and measurements important too: air-sea fluxes, skin vertical temperature profiles, air temperature, humidity, ice surface temperature, ...
 - Cost and ease of use / flexibility and complexity
 - Moderate price, some flexibility
 - Thermal infrared or microwave?
 - TIR
 - Spectro-radiometer or filter radiometer?
 - Filter
 - Imaging / non-imaging?
 - Non-imaging

Other considerations

- Ease of manufacture and alignment
- Ease of use, including:
 - Maintenance (modular subsystems, ...)
 - Deployment (portability, mounting, ...)
 - Documentation
 - Training
- Calibration scheme

ships4sst: FRM4SST

Spectral selection (spectrometers)

Grating

- Flexible
- Poor light grasp
- Sensitive to environment
- "Classic" Fourier (Michelson, Mach-Zehnder, …)
 - Extremely flexible •
 - Excellent spectral registration
 - Very good spectral resolution possible
 - Expensive and demanding (cooled detectors, sensitive to environment)
- Static Fourier
 - Simplest and cheapest (no moving parts)
 - Lower resolution
 - May be some difficulties with calibration

ships4sst: FRM4SST

Spectral selection (filters)

- Single band
 - Simplest
 - Fine for SST, IST
 - Not suitable for other applications
- Multiple bands (filter wheel)
 - Simpler. Just requires an additional mechanism
 - Easy to update band selection
 - Can't take simultaneous measurements in different bands
- Multiple bands (dichroic beamsplitters)
 - Complex
 - Simultaneous measurements in different bands
 - Multiple detector chains
 - May not be able to update bands without replacing beamsplitters too

Calibration scheme

- Self-calibrating radiometer
 - Robust, frequent end-to-end calibration of optical chain
 - Possibility for self-traceability through on-board calibration targets
 - Easily adapted for multiple viewing angles if equipped with scan mirror
- Nulling radiometer
 - Black body compromises, as servo-ed to scene temperature
 - Not ideal for sky measurements

Imaging / non-imaging

- Imaging
 - Large exit aperture near to aperture plane (distant image plane)
 - Fast sampling to avoid along-track smearing (poor noise performance)
 - Small detector sizes to resolve image (poor noise performance)
 - Likely to need cooled detectors for TIR
- Non-imaging
 - Small exit aperture if placed at image plane (but divergent beam)
 - Simple detector chain chopping and synchronous detection possible
 - Limited spatial resolution (t_{int} * v_{ship})
 - Uncooled detector will give decent noise performance (25 mK @ 1 s)

Other design choices

- "Buried" scan mirror mechanism with baffles, labyrinths, BB ports (SISTeR, ISAR)
- Chopped, uncooled detector + ellipsoid mirror (SISTeR)
- Compact small-aperture black bodies (SISTeR, ISAR)
- Modular subsystems (new)
 - Integrated electronics for BBs, mechanisms, detector
 - "Plug and play"
- Serial bus to subsystems (new)
- Synchronous control of instrument (SISTeR)
 - Embedded programming environment
 - Wrapper for ISAR-like configuration files if needed
- PoE / USB-C / other combined power and data protocol (new)
- Internal UPS (ISAR)

Other design choices

- Compact (~ 20 kg, 20 cm x 20cm x 50 cm SISTeR, ISAR)
- Integral tethering point (new)
- Integral or demountable carry handle

TBC

- Instrument mount
- Scan mirror drive
- Scan mirror materials and coatings
- Weather door mechanism

Summary

- Baseline design is a self-calibrating thermal infrared filter radiometer
- Will be an evolution of current designs (ISAR, SISTeR), rather than a radical change
- Multiple spectral bands possible (selected by filter wheel)
- Emphasis on ease of manufacture and ease of use

ships4sst: FRM4SST